
FACULTY OF ENGINEERING DESIGN AND PRODUCTION ENGINEERING DEPARTMENT

Engineering Metrology Credit Hour System

Report On:

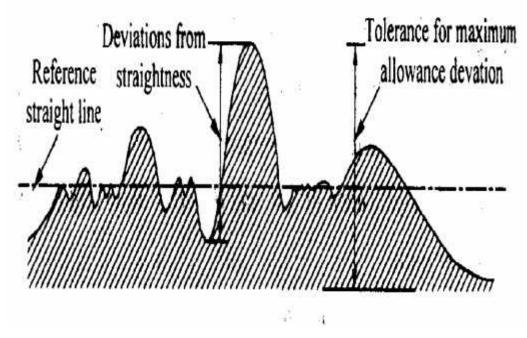
(1)

Out of Straightness

Metrology laboratory

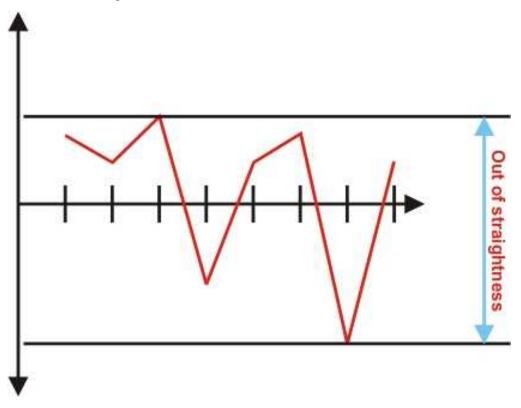
Student Name	Remark
Class No:	Signature
B.N.	

2016


Definition:

The straightness tolerance of a line is the distance between two parallel planes between which all points on the line must lie if the tolerance is specified in only one direction.

Depending on the manufacturing process, three accuracy grades are differentiated.


- Coarse (g) for tolerances that can be maintained by ceramic manufacturing techniques, for example, by extruding, casting or turning, which find use in high voltage electrical and chemical apparatus technologies.
- Medium(m) applies primarily to ceramic products of medium size produced by extruding, unmetered pressing, metered moist pressing, metered dry pressing or white finishing.
- Fine (f) applies to products for which the accuracy grades coarse and medium are inadequate. The fine grade can only be achieved using additional measures such as grinding after sintering. If the required accuracy is "fine", then the degree of accuracy must be agreed between the manufacturer and user.

The specification for general tolerances for straightness (B) of "medium" accuracy grade is: General tolerance DIN 40 680-B-m.

What is the meaning of out of straightness?

It is the difference between the maximum positive and the maximum negative value

Experiment

Objective:

The objective of this experiment is to determine the degree of out of straightness using different methods.

Equipments:

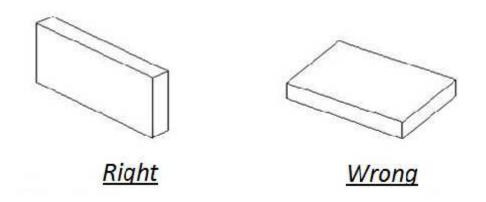
The equipments used in this experiments are:

- Straight edge
- Sensitive level
- Steel rule

Procedure:

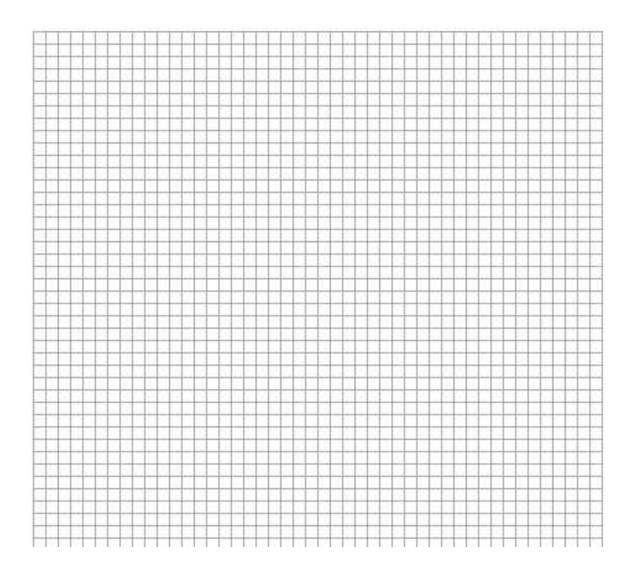
- Divide the straight edge into equal spaces according the level span (example: 100 mm). divide the length in to 10 parts
- 2- Put the straight edge on the slip gauge in the right position which maximize the moment of inertia (space = 0.554 length)
- 5-move the two slip gauge in steps along the surface to be checked.
- 6- At each position two readings were taken
- 7-repeat 5&6 times with the ganging of the slip gauge
- 9- Adjust all readings to relate to the first point.
- 10 On reaching the last point, the level should be moved backwards over the same points to obtain reading checking.
- 11 The mean of the two readings for each position should taken.
- 12 The results are then adjusted to eliminate the error introduced due to both the position of supports and

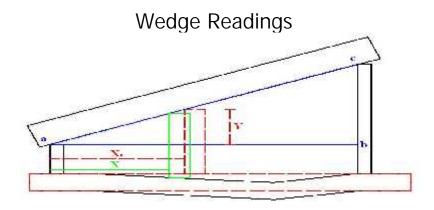
the natural deflection of the surface. This can be done in tabular form .


Right Positioning of straight edges:

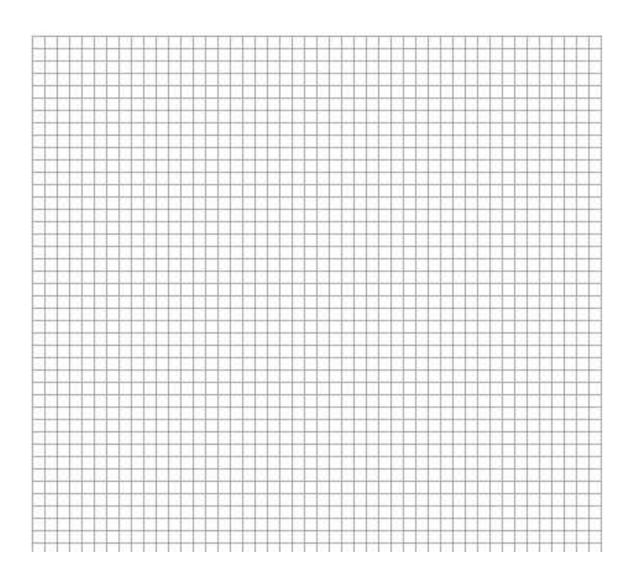
Straight edge is a measuring tool which consists of a length of a steel of narrow and deep section.

For checking the straightness of any surface, the straight, edge is placed over the surface and two are viewed against the light, which clearly indicates the straightness


The first method "Inaccurate method " the straight edge is placed over the surface and two are viewed against the light, which clearly indicates the straightness. Usually the gap between the straight edge and surface will be negligibly small for perfect straight surfaces.


It will depend on the intended use of the straight edge . the following formulas , having foreign standards (DIN) for source

Tool Accuracy Grade	Maximum Deviation from Mean Plane of Any Point along Measuring Surface
Reference quality straight edge	$\pm \left(0.000,040 + \frac{L}{200,000}\right)$ inches
Toolmaker quality straight edge	


Readings

Position			
Readings			

Position			
Readings			

Measurement using level

Experiment Objective:

For a given Micrometer Clinometers it is required to:

- Use Micrometer Clinometers to check the straightness of the edge.
- Determine the maximum out-of-straightness using semi analytical method of analysis.

Measuring procedure

Forward Reading of Micrometer Clinometers:

- Put the Clinometers on two slip gauges and make the distance between them 10 cm
- **O** Rotate the thimble till the two bubbles match

• Take the reading from main scale and from the thimble scale Backward Reading of Micrometer Clinometers:

For the same measured distance (forward reading taken)

- Change the position of the two slip gauges to reveres direction
- **O** Reverse the Clinometers
- **O** Rotate the Thimble till the two bubbles matches
- **O** Take the reading from main scale and from the thimble scale
- Use the following relation to get the height of the measured point related to the known one, it divided on 10 because the reading of Clinometers is adjusted as it sets on one meter base not 10 cm, so we divide the value on 10 to get the true height of the point:

```
height = (forward – backward) / 2 \times 10
```

- Repeat these procedures for all points on the edge to be measured.
- O Calculations: (Semi Analytical Method)

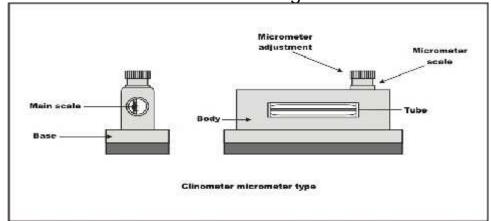
Length (cm)	Forward (mm)	Backward (mm)	Height (mm)	Cumulative
0-10	14.54	5.70	0.44	0.44
10 - 20	14.54	5.65	0.44	0.88
20 - 30	14.49	5.68	0.44	1.32

In columns 1, 2 & 3 Readings I got

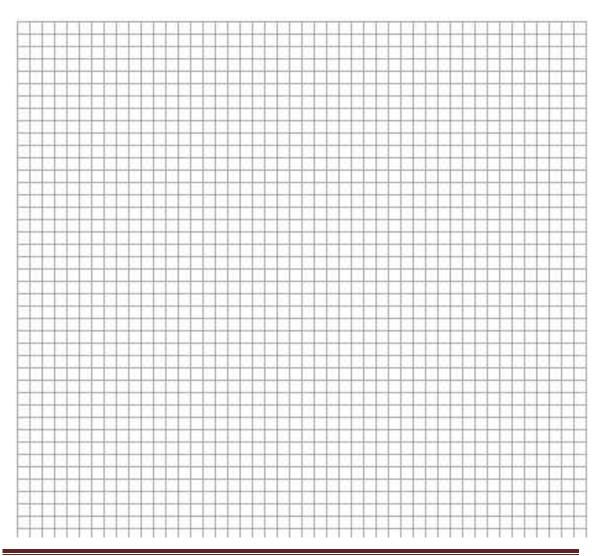
In 4th column:

height = (forward – backward) / 2 * 10

In 5th column:


every number + the previous one till last reading

real reading =forward- backward/2


□ Note :

The reading in the micrometer is mm/m so we have to convert it to mm so we will divide on 10 mm

Level Readings

Position			
Readings			

Experiment Analysis

A straight edge of rectangular cross section is checked using a precision spirit level which was marked

" 1 division = mm in mm.

The readings of the bubble in the forward and backward directions for the five positions taken along the edges as shown in the following table, readings are taken as divisions.

The interval distance is mm.

	1 2	2 :	3 4	4 5	5

	First	Second	Third	Fourth	Fifth
Forward					
Backward					

Step No. 1

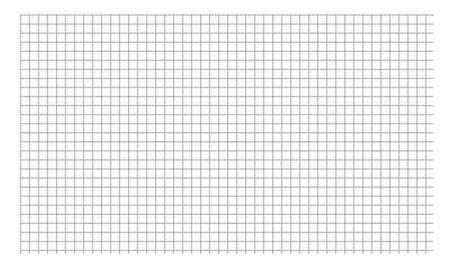
Convert the reading from division to their corresponding *mm* values.

Scale value of the level =

The reading were taken at mm interval

Thus each reading must be multiplied by mm

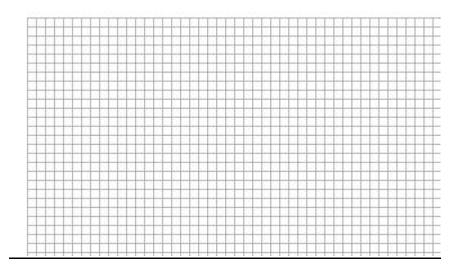
	First	Second	Third	Fourth	Fifth
Forward					
Backward					


Step No. 2

Exclude the error of position by taking the average of reading in both forward and backward at each point

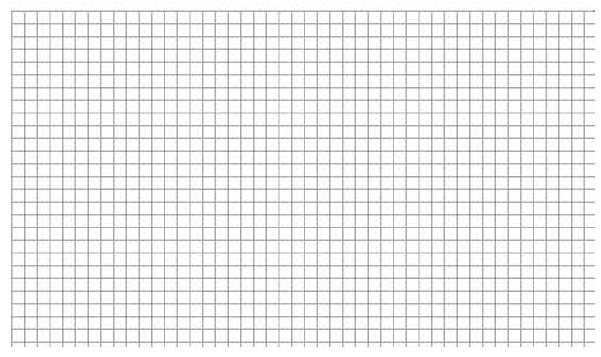
	First	Second	Third	Fourth	Fifth
Forward					
Backward					
Average					

Step No. 3


Convert the relative readings to absolute readings

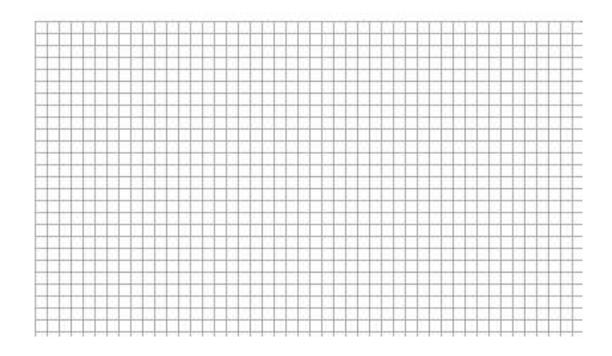
	First	Second	Third	Fourth	Fifth
Average					
Absolute					

The readings now are as shown below

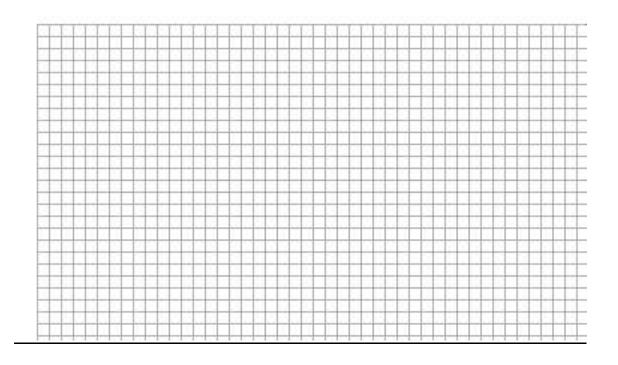

	First	Second	Third	Fourth	Fifth
Absolute					

Semi Analytical Solution

<u>Step - 1</u>


Connect the first and last points. Consider this line as reference line

Step No-2


Find the height of the measured points refereed to the reference line instead of the horizontal line.

The following are the measured values measured refereed to the horizontal line

	First	Second	Third	Fourth	Fifth
Average					
Absolute					

While the following are their corresponding at the generated reference line

Find the slope m =

Find the height of line (with slope m) at each point

	First	Second	Third	Fourth	Fifth
	1	2	3	4	5
Absolute					

Calculate the difference between the two corresponding values

to get the measured valued measured from the reference line

	First	Second	Third	Fourth	Fifth
Measured to HI					
line					
Reference line					
Measured to ref					
Line					

The previous valued were determined normal to horizontal line. These values have to be normal to the reference line

Calculate the inclination of reference line

 $\tan \theta = \dots$ $\theta \approx \dots$ $\cos \theta = \dots$

Report No: 1 Form Measurements – Straightness

	First	Second	Third	Fourth	Fifth
Measured to HI line					
Reference line					
Measured to ref Line					
Measured normal to ref line cos 3 ¹					

Now the out of straightness values are

	First	Second	Third	Fourth	Fifth
values					

And the maximum out of straightness is

Analytical Solution

As previously mentioned, the point heights are

	First	Second	Third	Fourth	Fifth
Absolute					

<u>Step -1</u>

Find the centroid Point

	Point (x)	Height (Y)
	0	
	1	
	2	
	3	
	4	
	5	
Sum	15	
Average =	2.5	
Sum/ no of points		

The centroid point coordinates are ($X^{\setminus}, Y^{\setminus}$) = (2.5, 10.1667)

<u>Step -2</u>

Calculated X and Y for each point related to the centroid point

X at any point = X - (X^{\setminus})

Y at any point = Y - (Y^{\setminus})

Point	Height	X- X\	Y- Y\
0			
1			
2			
3			
4			
5			

<u>Step -3</u>

Find the reference line which is the least square line

 $m = \sum (X - X) (Y - Y) / \sum (X - X)^{2}$

Therefore, two additional column must be determined to calculate (X - X\) (Y-Y\) and $(X - X\)²$

Point	X- X\	Y- Y\	(x-x\) (y-y\)	(X- X∖)²
1				
2				
3				
4				
5				
6				
Sum		•		

$\mathsf{m} = \sum (\mathsf{X} - \mathsf{X} \mathsf{)} (\mathsf{Y} \mathsf{-} \mathsf{Y} \mathsf{)} / \sum (\mathsf{X} - \mathsf{X} \mathsf{)}^2$

=

Find the height of line (with slope m) at each point

Point	
1	
2	
3	
4	
5	
6	

Point	Reading	Line	Deviation
1			
2			
3			
4			
5			
6			

Max out of straightness = 2.619 + 2.495 = 5.114

Distance	Heights	Xc=Xi-	Yc=	Xc*2	Xc*Yc	Y=mXi	Deviation = Yc-Y
(Xi)	(Yi)	Ха	Yi-				
			Ya				
0							
100							
200							
300							
400							
500							
600							
700							
800							
900							
1000							
5500							

Report No: 1 Form Measurements – Straightness

Solved Problem

A straight edge of rectangular cross section is checked using sensitive level and the readings of the bubble in the forward directions for the five positions taken along the edge are 0. 6.5, 8.5, 3.5, 7.5 and O, 5.5, 7.5, 2.5, 6.5 respectively. The straight edge when checked was supported its end.

The procedure often determining the mean value, column 4, is to force the end points. A, B to zero and then to adjust all the other points accordingly, then:

x		Y	_	Heights	Deviation from ZAB	Deflec- tion	out of straigh- t ess
	Forward	ba kward	average	of pat C, D,E,F			
0	0	0	0	0	0	٥	0
1	0	0	0	m = 1.4	c-c=-1.4	Y ₁	z ₁ - Y ₁
2	6.5	5.5	6	2m = 2.3	d-d=+3.2	Y2	${}^{2}2^{-}$ ${}^{Y}2$
3	8,5	7.5	8	3m = 4.2	E-E+3,6	¥3	23- 73
4	3.5	2.5	3	4m = 5.6	F-F=-2.6	¥4	Z4- Y4
5	7.5	6.5	7	5m = 7.0	D	D	0

Report No: 1 Form	Measurements – Straightness
-------------------	-----------------------------

Measured distance	Heights ^Y i	Centroid X, Y	x _i = x _i -x	x²	Y _i = Y _i -ÿ	x _i y _i	Slope m	Y= mX _i	Devia- tion Y ₁ - Y
×1	×1	<u>x</u>							
x ₂	¥2	Y) @ 		-	
x3	¥3	$\overline{Y} =\frac{1}{n}$	(92)				m = x _i y _i		
, x _n	ı Yn						x ^z _i		
x _i	Yi			x ² _i		x _i y _i			

$\mathbf{x}_{\mathbf{i}}$	۲į	x , y	×i	x ²	Y _i	x _i y _i	slope	Y = MA;	Devia- tion
0	0		-500	250000	-7	3500		-6.33	-0.67
100	0		-400	160000	-7	2800		-5.06	-1.94
200	6		-300	90000	-1	300		-3.79	+2.79
300	8	x =	-200	40000	+1	-200		-2.53	+3.53
400	3	5500 11	-100	10000	-4	400	m=13900 1100000		-2.73
500	7	=500	0	0	0	0	=0.0127	0	0
600	1	$\bar{Y} = \frac{77}{11} -$	100	10000	-1	-100		1.27	-2.73
700	10	=7	200	40000	+3	600		2,53	+1.53
800	10		300	90000	+3	900		3.97	-0.79
900	15		400	160000	+3	3200		5.06	+3.06
1000	12		500	250000	+5	2500		6.33	+1.33
5500	77			1100000		1390	0		