Course specifications of

Systems Modelling – MDP 443

University: Ain Shams Faculty: Engineering

Program on which the course is given: Major or minor element of program : Department offering the program : Department offering the course: Academic year/ Level: Date of specification approval: **B. Sc. in Mechanical Engineering.** N.A. Design and Production Engineering. Design and Production Engineering 4th, First semester

A- Basic Information

Title:	Systems Modelling	Code:	MDP 443
Credit Hours:	N.A.	Lecture:	2
Tutorial :	2	Practical:	0
Total:	4		

B- Professional Information

1- Overall aims of course

By the end of this course, the student will be able to:

- 1- Identify the problem
- 2- Construct a model of the given problem.
- 3- Test the model to ensure that its behavior conforms to the behavior of the actual problem under real situation.
- 4- Identify and collect data (supply values for input parameters).
- 5- Run the simulation process.
- 6- Make a plan of experimental tests.
- 7- Analyze results.
- 8- Use simulation packages.

The student shall attain the above mentioned objectives efficiently under controlled guidance and supervision while gaining the experience through application and analysis of realistic case studies.

2- Intended learning outcomes of course (ILOs) a. Knowledge and understanding

a1- Define a problem.

Course Coordinator:	Dr. Mohamed Fouad Abdin
----------------------------	-------------------------

Head of Department: Prof. Dr. Hesham abd el hameed sonbol

Date: / /

- a2- Define decision alternatives.
- a3- Describe restrictions on decisions to be made.
- a4- Define objective criterion for evaluating the alternatives.
- a5- Explain the effect of model accuracy in representing the real system on the quality of the resulting solution.
- a6- Know the meaning of optimization.
- a7- Know the close relation between Queuing theory and Simulation.

b. Intellectual skills

- b1- Assess the formulation of a real problem into a simulation model.
- b2- Use Statistical distributions to represent input data.
- b3- Use appropriate techniques for the verification and validation of the simulation model.
- b4- Use statistical tools in the analysis of simulation results.
- b5- Make manual simulation using Monte Carlo technique.

c. Professional and practical skills

- c1- Identify data and structure of realistic problems.
- c2- Construct the appropriate simulation model to deal with real case studies.
- c3- Adapt the real data to suit the simulation model or vice versa.
- C4-Deal with simulation packages.

d. General and transferable skills

d1- Search for real objectives and constraints.

d2-Write technical reports and conduct presentation about a real case study.

d2-Practice working in a team.

3- Contents

No	Course Content	Lecture	Tutorial	Total

Course Coordinator: Dr. Mohamed Fouad Abdin

Head of Department: Prof. Dr. Hesham abd el hameed sonbol

Date: / /

1	Overview and definitions	2	2	0
2	Queuing Models as the basis of simulation	6	2	4
3	Monte Carlo Simulation	4	2	2
4	Input data analysis using statistical distributions	12	4	8
5	Simulation Package (SLAM or ARENA)	18	10	8
6	Methods of Model validation and verification	6	4	2
7	Design of experiments	8	4	4
8	Case studies	4	2	2
	Total	60	30	30

4- Assessment schedule

Assessment method	No	Description	Week No	Weight (%)
Assessment	1	Assessment No. 1	2	1
Assessment	2	Assessment No. 2	4	1
Written exam	3	Quiz No. 1	5	3
Written exam	4	Mid term Examination	7	10
Assessment	5	Assessment No. 3	9	1
Written exam	6	Quiz No. 2	10	4.5
Case study	7	Case study No. 1	11	7.5
Assessment	8	Assessment No. 4	12	2
Written Exam	9	Final Term Examination	16	70
Total			100 %	

5- List of reference

5.1 Course notes.....

5.2- Essential books (text books)

Course Coordinator: Dr. Mohamed Fouad Abdin

Head of Department: Prof. Dr. Hesham abd el hameed sonbol

Date: / /

- 1- Averill, L. and Kelton, D.M.; Simulation Modelling and Analysis; McGraw Hill Co.; 1999.
- 2- Kelton, D.M., Sadowski, R.P. and Sadowski, D.A.; Simulation with Arena with CD Rom; McGraw Hill; 2001.

5.3- Recommended books.....

5.4- Periodicals, Web sites, ... etc

. ---- ---- ----

1- www.ie.org

6- Facilities required for teaching and learning

Appropriate teaching class accommodations including presentation board and data show.
 Computer Lab for software use.