Course specifications of

University: Ain Shams	Faculty: Engineering
Program on which the course is given	B. Sc. in Mechanical Engineering, Production Section
Major or minor element of program	N.A.
Department offering the program	Design and Production Engineering
Department offering the course :	Design and Production Engineering
Academic year/ Level :	Fifth year/First semester
Date of specification approval :	

Computer Applications in Industry - MDP 427

A-Basic Information

Title :	Computer Applications in Industry	code :	MDP-427
Credit Hours :	N.A.	Lecture :	2
Tutorial :	2	Practical	Total: 4

B- Professional Information

1 - Overall aims of course

By the end of the course the students will be able to:

- Acquainted with the different techniques of effective using of computer in manufacturing.
- Use of modern tools, and applications programs commonly used in CAM
- Acquainted with the different CAD data representation
- Understand the fundamental concepts of computer assisted CNC programming
- Acquainted with the different sensors and transducer
- Develop a process plan for a real case study
- Plan a production facility for a real case study

2- Intended learning outcomes of course (ILOs)

a-Knowledge and understanding

- al- Describe the different applications of computers in industry
- a2- Identify the Different CAD data representation and different neural files
- a3- Explain the Fundamental concepts of computer assisted CNC programming
- a4- Explain the concepts of computer aided process and production planning
- a5- Describe the different sensors and transducer concept
- a6- Know the concept of rapid prototyping

Course Coordinator: Head of Department: Date: / /

b-Intellectual skills

- b1 Choose a suitable sensors for different applications
- b2 Choose an appropriate CAD data representation for different applications
- b3 Establish a complete plan for a case study
- b4 Write CNC part program using computer assisted language

c-Professional and practical skills

- c1 Use appropriate lab sensors and transducers
- c2 Design an experiments in the sensors lab
- c3 Use different CAM application softwares

d-General and transferable skills

- d1 Write technical report according the scientific standards guideline
- d2 Present the different knowledge concepts through a report in oral seminar
- d3 Work as a part of a team in process and production planning group for a real case study

3- Contents

No	Course Content	lectures lectures	tutorials	Total
1	CAD data representation	2	2	4
2	Group Technology	2	2	4
3	Computer Aided Process Engineering	2	2	4
4	Computer Aided Process Planning (CAPP)	2	2	4
5	Computer Assisted NC Part Programming	4	6	10
6	Computerized Machinability Data	2	2	4
7	Computer Aided Line Balancing	2	2	4
8	Computer Aided Production Planning	2	2	4
9	Sensors and Data acquisition	2	2	4
10	Computerized Process Control	4	2	6
11	Computerized Quality Control	2	4	6
12	Rapid prototyping	4	2	6
	Total Hours	30	30	60

Course Coordinator: Head of Department: Date: / /

4- Assessment schedule

Assessment method	No	Description	Week No	Weight (%)		
assignments	1	ass 1	Week 3	2		
assignments	2	ass 2	Week 5	2		
Written exams	3	mid term	Week 7	10		
assignments	4	ass 3	Week 9	2		
Written exams	5	quiz	Week 10	2		
reports	6	report	Week 11	10		
assignments	7	ass 4	Week 12	2		
Written exams	8	final	Week 16	70		
Total						

5- List of references

5.1 Course notes

- Course lecture notes will be distributed during lectures

5.2 Essential books (text books)

Thomas O. Boucher, Computer Automation In Manufacturing An Introduction, Chapman & Hall, 1996
2-Galip Ulsoy and Warren R., Microcomputer Applications In manufacturing, John Wiley & Sons, 1989
3-Andrew Kusiak, Intelligent Manufacturing Systems, Pre

6- Facilities required for teaching and learning

Appropriate teaching class accommodations including; data show, presentation board and white board

Sensor lab, CAM lab and CNC lab equipped with normal equipments

Course Content/ILO Matrix

Course Content	a1	a2	a3	a4	a5	аб	b1	b2	b4	c1	c2	c3	d1	d2	d3
CAD data representation	\bullet		•												
Group Technology			•										0		
Computer Aided Process Engineering				٠				•						0	
Computer Aided Process Planning (CAPP)				٠				•							0
Computer Assisted NC Part Programming	•	•	•					•	•						
Computerized Machinability Data	\bullet														
Computer Aided Line Balancing	\bullet							\bullet						•	
Computer Aided Production Planning	•							•							•
Sensors and Data acquisition										\bullet					
Computerized Process Control												\bullet		0	
Computerized Quality Control												\bullet			
Rapid prototyping						\bullet						\bullet			

Learning Method /ILO Matrix

Learning Method	a1	a2	a3	a4	a5	a6	b1	b2	b4	c 1	c2	c3	d1	d2	d3
Lecture	\bullet	lacksquare	\bullet	•	\bullet	\bullet	lacksquare	•	lacksquare						
Tutorials		ullet	•		•		igodot		igodot	ullet		•			
Workshop														\bullet	

Assessment Methods /ILO Matrix

Assessment	a1	a2	a3	a4	a5	a6	b1	b2	b4	c1	c2	c3	d1	d2	d3
assignments : ass 1				\bullet											
assignments : ass 2															
Written exams : mid term															
assignments : ass 3															
Written exams : quiz					٠			٠							
reports : report															
assignments : ass 4															
Written exams : final															

Course Coordinator: Head of Department: Date: / /