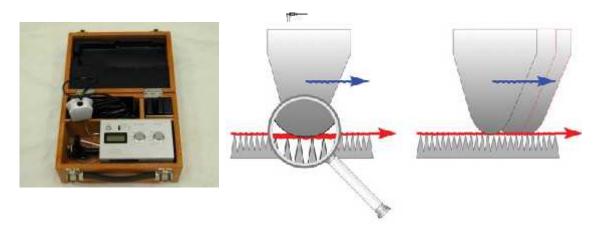
FACULTY OF ENGINEERING


DESIGN AND PRODUCTION ENGINEERING DEPARTMENT

Credit Hour System *Metrology*

Assignment No.

Surface Roughness

Remark		
Signature		

Prepared by Prof. Mohamed Ahmed Awad

Q1: Calculate the arithmetical roughness average parameter of a surface for which the sampling length was 0.08 mm, the graph was drawn to a vertical magnification of 20,000 and a horizontal magnification of 200, and the areas above and below the datum line were :

Above	150	80	190	60	mm ²
below	85	25	180	130	mm ²

Assignment No: 4 Roughness Problems

Q2: In determination of the bearing area curve of a surface of 0.25 mm sampling length , the following lengths were determined at equal depths:

0.25 0.35 0.6 0.9 1.2 1.25 1.45 1.65 2.2 mi

If the max peak to valley height (R_t) equals 240 μm , draw the bearing area curve then calculate the H value of the surface

Assignment No: 4 Roughness Problems

Q3: In the measurement of surface roughness, heights of 20 successive peaks and through were measured from a datum and were: (Reading are in microns)

35	25	40	22	35	18	42	25	35	22
36	18	42	22	32	21	37	18	35	20

If the measurements were obtained over a one sampling length of a surface having 10 mm. assessment length , determine the R_t , CLA, HSC R_{3z} H and R.M.S. values of the rough surface.