

Engineering Measurement MDP 141

Assignment 7

Regression and Correlation

Q1: The following data points are expected to follow a functional variation of y=mx+c

- Plot the data on normal scale .
- Obtain the values of c and m using least square method
- Plot the regression line over the data.
- Predict the y value at x=50 both analytically and graphica

Х	Y
10.0	42.0
20.0	57.0
40.0	105.0
60.0	132.0
80.0	180.0
100.0	225.0

Q2: In an experiment to determine the temperature distribution along a length of heated pipe, the following data were recorded :-

Distance from the pipe end mm	100	200	300	400	500
Temperature C°	110	190	290	390	505

- a) plot the date.
- b) Using the least square method , determine the equation of the linear relation T=a+bL
- c) Plot the regression line over the data.
- d) Predict the temperature at a distance of 250 mm

Q3: The force deflection data of a certain concrete beam were as follows :-

Applied force (F) KN	100	200	300	400	500
Deflection (δ)mm	1.3	2.4	3.2	4.6	5.0

a) plot the date on linear scale.

b) Using the least square method , determine the equation of the linear relation δ =a+bF

- c) Plot the regression line over the data.
- e)Predict the deflection correspond to a force of 250 KN an ically, and

graphically.

Q4: The following data points are expected to follow a certain function

- Obtain the values of c and m using least square method
- Plot the regression line over the data.
- Predict the y value at x=12 both analytically and grage cally.

Х	Y
2.0	8.0
4.0	35.0
5.0	50.0
8.0	120.0
10.0	205.0
15.0	410.0
20.0	780.0

Q5: The following data points are expected to follow a functional variation of $y=ax^b$

Х	1.21	1.35	2.40	2.75	4.50	5.10	7.10	8.10
Y	1.20	1.82	5.00	8.80	19.5	32.5	55.0	80.0

It is required to

- Use the method of least squares to obtain the best correlation, (values of a, and b).
- Plot the regression line over the data.
- Determine the value of Y at X=3.

Q6: The following data points are expected to follow a certain function

X	4	5.3	11	21	30	50
Y	105	155	320	580	1050	1900

It is required to

- Use the method of least squares to obtain the best correlation, (values of a, and b).
- Plot the regression line over the data.
- Determine the value of Y at X=10.

Q7: The following data are expected to follow a relation of the form y=a+(b/x)

Х	2	10	20	50	100
Y	55	15	10	7	6

-Plot the data on linear scale.

-Predict the relation in accordance to the least square method.

-Plot the regression line

-predict the value of y at x=25, analytically nd graphically.

Q8: The following data are expected to follow a relation of the form y=a+(b/x)

Х	10	50	100	250	500	1000
Y	150	110	105	102	101	100

-Plot the data on linear scale.

-Predict the relation in accordance to the least square method.

-Plot the regression line.

-predict the value of y at x=300, analytically and graphical

Q10: In an Experiment to study the operating characteristics of Pelton turbine, the recorded experimental readings were as follows

No	Turbine speed N (RPM)	Reading of the left spring balance S1 (N)	Reading of the right spring balance S2 (N)	
1	2300	0.0	0.0	
2	2200	1.5	2.5	
3	2000	2.0	3.5	
4	1900	2.5	4.5	
5	1700	3.0	6.0	
6	1300	3.0	7.5	
7	1100	3.0	8.5	
8	800	3.5	10.0	
9	600	3.5	10.5	

Draw the conclusion concerning the recorded data

Q11: Write the regression line for the following points, then calculate the correlation coefficient:

x	y
1	4
3	2
4	1
5	0
8	0

Q12: A company wanted to know if there is a significant relationship between the two variables. They collect data as follows.

Variable 1	Variable 2
207	6907
180	5991
220	6810
205	6553
190	6190

Q13: calculate the correlation coefficient for the following

Variable 1	Variable 2
50	155
60	190
74	250
71	200
55	149
58	180
65	185
77	220
72	195
65	180
66	178
68	200

Q14: The following data were recorded for a certain variable; calculate the correlation coefficient then choose the closest one

Х		4		4	6		5		4
Y		7		3	12		10		4
Approximately									
а	0.73		b	1.2	С	0.90		d	0.52

Q15: Without calculation, estimate the correlation coefficient for the following

Q16: In choosing the best physical phenomenon to be used as temperature measuring sensor, three phenomena were used in the study; A, B and C. The change in each phenomenon with temperature change is recorded as shown in the following table:

Temperature	А	В	С
0	0	0	0
10	1	12	1
20	2.1	26	1.2
30	2.9	30	1.3
40	3.8	41	1.1
50	4.9	55	1.1

60	5.8	61	1.4
80	8.1	79	1.1
100	10	98	1.2

- a) Conclude the relationship between the process variable and each of the different phenomenon?
- b) Determine the correlation coefficient for each phenomenon?
- c) Decide with reasons which phenomenon would be better to be used as measuring sensor?
- d) Predict the phenomenon value if the measured temperature are 70 then 90?

Least Square equations

$$y = mx + b \qquad \qquad m = \frac{N \cdot \sum xy - \sum x \cdot \sum y}{N \cdot \sum x^2 - \sum x^2} \quad b = \frac{\sum y - m \cdot \sum x}{N}.$$

Correclation Coeffiecient Equation

$$\mathbf{r} = \frac{\sum xy - \frac{\sum x \sum y}{n}}{\sqrt{\left(\sum x^2 - \frac{(\sum x)^2}{n}\right) \left(\sum y^2 - \frac{(\sum y)^2}{n}\right)}}$$