

Engineering Measurement MDP 141

Assignment 7

Temperature Measurement

Q1: What are the relationship between the molecular structure of matter and kinetic energy. Explain the relationship between kinetic energy and heat.

Q2: State the **zeros law** of thermodynamics. Explain its effect on measuring temperature.

Q3: Convert the temperature 850 F and 1100 F into Kelvin, giving that C = (5/9)(F-32), K = 273.16 + C.

Q4: Define and discuss the significance of the following terms, as they apply to temperature and temperature measurements:

- temperature standards
- fixed points

Q5: State the four different principles of measuring temperature

Q6: Using neat Illustrate the working principles of each of the following (4 marks)

- Alcohol thermometer
- Mercury thermometer
- Bi metal thermometer

Q7: Calculate the change in each of the following if the measuring temperature is 50°C:

- Length of a steel rod whose length is 60 mm if the thermal coefficient of expansion is 12 * 10 ⁻⁶ m/ m^o C
- Resistance of a copper wire with resistance 0.5 Ω at normal operating temperature. The temperature coefficient for copper is $4.29 \times 10^{-3} (1/^{\circ}C)$.
- Resistance of a platinum wire that is 2 m in length and has diameter of 0.1 cm. The resistivity of platinum at 25oC is 9.8. 10-6 Ω-cm.
- A wheatstone bridge is shown in Fig. 1. R1=120.6 Ω , R3 = R4 = 120 Ω and Rs =100 Ω .
 - a) What resistance must R2 have for resistance balance?

b) If the value of resistance R_2 is changed to 120 Ω while the source voltage (E) is 12 V. What will be the reading of the meter over (e_o) $\ ?$

Q8: An RTD forms one arm of an equal-arm Wheatstone bridge, as shown in Figure below. The fixed resistances, R2 and R3 are equal to 25 Ω . The RTD has a resistance of 25 Ω at a temperature of 0o C and is used to measure a temperature that is steady in time. The resistance of the RTD over a small temperature range may be expressed, as in Equation, R = Ro [1 + α (T - To)]

Suppose the coefficient of resistance for this RTD is 0.0039250 C-1. A temperature measurement is made by placing the RTD in the measuring

environment and balancing the bridge by adjusting R1. The value (required to balance the bridge is 37.36 Ω . Determine the RTD resistance then determine the temperature of the RTD

Q10: Give one word or few words

- A sensor having relatively large and negative temperature coefficient (.....)
- A sensor based on thermal expansion of a solid (.....)
- A sensor in which the electric resistance decrease as temperature increase (.....)
- In controlling heating system using on/off, The system turns the heater on at one temperature and turns it off at another, higher temperature.
- A sensor in which the electric resistance increase as temperature increase (.....)

Q11: Assign a proper sensor to

- Control the temperature in the room without instant respond.
- Control the temperature in electric water tank

•	Controlt	the temperature in tea kettle	

•	Control	the tem	perature	in tea	kettle	

• Fire protection in a room based on temperature sensing

• Binary control on / off temperature control with high response

• Linear temperature control

• Change the resistance in material due to temperature change

• Convert change in temperature into electrical signal

•	Sense temperature for a body which is not accessible for actual			
	physical	contact		