

Engineering Measurement MDP 141

Assignment 5

Analysis of measured data

- Q1: Ten measurement of a resistor gave 101.2 Ω , 101.7 Ω , 101.3 Ω , 101.0 Ω , 101.5 Ω , 101.3 Ω , 101.2 Ω , 101.4 Ω , 101.3 Ω , 101.1 Ω . Assume that only random errors are present
 - a) Test the data for peak removal
 - b) Eliminate the inconsistent points.
 - C) Determine the Arithmetic mean.
 - d) Determine the Standard deviation
 - e) Express the mean value and the uncertainty (68% confidence level) of the measured values.
- Q2: A set of independent length measurements were taken by six observers and were recorded as 12.8 mm, 12.2 mm, 12.5 mm, 13.1 mm, 12.9 mm, and 12.4 mm;
 - a) Test the data for peak removal
 - b) Eliminate the inconsistent points.
 - C) Determine the Arithmetic mean.
 - d) Determine the Standard deviation
 - e) Express the mean value and the uncertainty (95% confidence level) of the measured values.
- Q3: The following ten observations were recorded when measulength, 41.7 mm, 42.0 mm, 41.8 mm, 42.0 mm, 42.1 mm, 41.9 mm, 42.0 mm, 41.9 mm, 42.5 mm, and 41.8 mm.
 - a) Test the data
 - b) Eliminate the inconsistent points.
 - C) Determine the Arithmetic mean.

d) Determine the Standard deviation

e) Express the mean value and the uncertainty (99.7% confidence level) of the measured values.

Q4: A certain length measurements were made and the results are tabulated below. It is required to ;

Reading No	1	2	3	4	5	6	7	8	9	10
Length m	493.6	501.2	489.9	492.4	492.6	508.6	491.8	498.9	493.3	493.9

a) Test the data

b) Eliminate the inconsistent points.

C) Determine the Arithmetic mean.

d) Determine the Standard deviation

e) Express the mean value and the uncertainty (99.7% confidence level) of the measured values.

Q5: The following data points are expected to follow a functional variation of y=mx+c

- Plot the data on normal scale .

- Obtain the values of c and m using least square method

- Plot the regression line over the data.

- Predict the y value at x=50 both analytical

Х	Y
10.0	42.0
20.0	57.0
40.0	105.0
60.0	132.0
80.0	180.0
100.0	225.0

Q6: In an experiment to determine the temperature distribution along a length of heated pipe, the following data were recorded :-

Distance from the pipe end mm	100	200	300	400	500
Temperature C°	110	190	290	390	505

- a) plot the date.
- b) Using the least square method , determine the equation of the linear relation T=a+bL
- c) Plot the regression line over the data.
- d) Predict the temperature at a distance of 250 mm

Q7: The force deflection data of a certain concrete beam were as follows :-

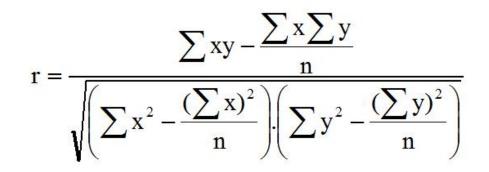
Applied force (F) KN	100	200	300	400	500
Deflection (δ) mm	1.3	2.4	3.2	4.6	5.0

a) plot the date on linear scale.

b) Using the least square method , determine the equation of the linear relation δ =a+bF

- c) Plot the regression line over the data.
- d) calculate the correlation coefficient

Least Square Method Equation:


According to this method the constants of the linear function could be determined by Eq.

$$y = c + mx$$

$$c = \frac{\sum y \sum x^2 - \sum xy \sum x}{n \sum x^2 - (\sum x)^2}$$

$$m = \frac{n \sum xy - \sum y \sum x}{n \sum x^2 - (\sum x)^2}$$

Simple correlation coefficient

